Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Clin Infect Dis ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657084

ABSTRACT

BACKGROUND: Shorter prophylactic vaccine schedules may offer more rapid protection against Ebola in resource-limited settings. METHODS: This randomized, observer-blind, placebo-controlled, phase 2 trial conducted in five sub-Saharan African countries included people without HIV (PWOH, n = 249) and people living with HIV (PLWH, n = 250). Adult participants received one of two accelerated Ebola vaccine regimens (MVA-BN-Filo, Ad26.ZEBOV administered 14 days apart [n = 79] or Ad26.ZEBOV, MVA-BN-Filo administered 28 days apart [n = 322]) or saline/placebo (n = 98). The primary endpoints were safety (adverse events [AEs]) and immunogenicity (Ebola virus [EBOV] glycoprotein-specific binding antibody responses). Binding antibody responders were defined as participants with a > 2.5-fold increase from baseline or the lower limit of quantification if negative at baseline. RESULTS: The mean age was 33.4 years, 52% of participants were female, and among PLWH, the median (interquartile range) CD4+ cell count was 560.0 (418.0-752.0) cells/µL. AEs were generally mild/moderate with no vaccine-related serious AEs or remarkable safety profile differences by HIV status. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody response rates in vaccine recipients were 99% for the 14-day regimen (geometric mean concentrations [GMCs]: 5168 enzyme-linked immunosorbent assay units (EU)/mL in PWOH; 2509 EU/mL in PLWH), and 98% for the 28-day regimen (GMCs: 6037 EU/mL in PWOH; 2939 EU/mL in PLWH). At 12 months post-dose 2, GMCs in PWOH and PLWH were 635 and 514 EU/mL, respectively, for the 14-day regimen and 331 and 360 EU/mL, respectively, for the 28-day regimen. CONCLUSIONS: Accelerated 14- and 28-day Ebola vaccine regimens were safe and immunogenic in PWOH and PLWH in Africa. TRIAL REGISTRATION: NCT02598388.

2.
Lancet Infect Dis ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38552653

ABSTRACT

BACKGROUND: Health-care providers and front-line workers are at risk of contracting Ebola virus disease during an Ebola virus outbreak and consequently of becoming drivers of the disease. We aimed to assess the long-term immunogenicity of the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen and the safety of and immune memory response to an Ad26.ZEBOV booster vaccination at 1 year or 2 years after the first dose in this at-risk population. METHODS: This open-label, single-centre, randomised, phase 2 trial was conducted at one study site within a hospital in Boende, Democratic Republic of the Congo. Adult health-care providers and front-line workers, excluding those with a known history of Ebola virus disease, were vaccinated with a two-dose heterologous regimen administered at a 56-day interval via a 0·5 mL intramuscular injection in the deltoid muscle, comprising Ad26.ZEBOV as the first dose and MVA-BN-Filo as the second dose. After the initial vaccination on day 1, participants were randomly assigned (1:1) via randomisation envelopes, opened in a sequential order, to receive an Ad26.ZEBOV booster vaccination at 1 year (group 1) or 2 years (group 2) after the first dose. We present the secondary and exploratory objectives of the trial-results of the primary objective have been published elsewhere. We measured immunogenicity at six timepoints per group as geometric mean concentrations (GMCs) of Ebola virus glycoprotein-specific IgG binding antibodies, using the Filovirus Animal Non-Clinical Group ELISA. We assessed serious adverse events occurring up to 6 months after the last dose and local and systemic solicited and unsolicited adverse events reported for 7 days after the booster vaccination. Antibody responses were analysed per protocol, serious adverse events per full analysis set (FAS), and adverse events for all boosted FAS participants. This trial is registered as completed on ClinicalTrials.gov (NCT04186000). FINDINGS: Between Dec 18, 2019, and Feb 8, 2020, 699 health-care providers and front-line workers were enrolled and 698 were randomly assigned (350 to group 1 and 348 to group 2 [FAS]); 534 (77%) participants were male and 164 (23%) were female. 319 in group 1 and 317 in group 2 received the booster. 29 (8%) in group 1 and 26 (7%) in group 2 did not complete the study, mostly due to loss to follow-up or moving out of the study area. In both groups, injection-site pain or tenderness (87 [27%] of 319 group 1 participants vs 90 [28%] of 317 group 2 participants) and headache (91 [29%] vs 93 [29%]) were the most common solicited adverse events related to the investigational product. One participant (in group 2) had a related serious adverse event after booster vaccination (fever of ≥40·0°C). Before booster vaccination, Ebola virus glycoprotein-specific IgG binding antibody GMCs were 279·9 ELISA units (EU) per mL (95% CI 250·6-312·7) in 314 group 1 participants (1 year after first dose) and 274·6 EU/mL (242·1-311·5) in 310 group 2 participants (2 years after first dose). These values were 5·2 times higher in group 1 and 4·9 times higher in group 2 than before vaccination on day 1. 7 days after booster vaccination, these values increased to 10 781·6 EU/mL (9354·4-12 426·4) for group 1 and 10 746·9 EU/mL (9208·7-12 542·0) for group 2, which were approximately 39 times higher than before booster vaccination in both groups. 1 year after booster vaccination in 299 group 1 participants, a GMC that was 7·6-times higher than before booster vaccination was still observed (2133·1 EU/mL [1827·7-2489·7]). INTERPRETATION: Overall, the vaccine regimen and booster dose were well tolerated. A similar and robust humoral immune response was observed for participants boosted 1 year and 2 years after the first dose, supporting the use of the regimen and flexibility of booster dose administration for prophylactic vaccination in at-risk populations. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Coalition for Epidemic Preparedness Innovations.

3.
Hum Vaccin Immunother ; 20(1): 2327747, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38523332

ABSTRACT

This phase-3, double-blind, placebo-controlled study (NCT04228783) evaluated lot-to-lot consistency of the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen. Participants were randomized (6:6:6:1) to receive the two-dose regimen from three consecutively manufactured lots of Ad26.ZEBOV on Day 1 paired with three consecutively manufactured lots of MVA-BN-Filo on Day 57 (Groups 1-3) or two doses of placebo (Group 4). An additional cohort also received an Ad26.ZEBOV booster or placebo 4 months post-dose 2. Equivalence of the immunogenicity at 21 days post-dose 2 between any two groups was demonstrated if the 95% confidence interval (CI) of the Ebola virus glycoprotein (EBOV GP)-binding antibody geometric mean concentration (GMC) ratio was entirely within the prespecified margin of 0.5-2.0. Lot-to-lot consistency (i.e., consecutive lots can be consistently manufactured) was accomplished if equivalence was shown for all three pairwise comparisons. Results showed that the primary objective in the per-protocol immunogenicity subset (n = 549) was established for each pairwise comparison (Group 1 vs 2: GMC ratio = 0.9 [95% CI: 0.8, 1.1], Group 1 vs 3: 0.9 [0.8, 1.1], Group 2 vs 3: 1.0 [0.9, 1.2]). Equivalence of the three groups for the Ad26.ZEBOV component only was also demonstrated at 56 days post-dose 1. EBOV GP-binding antibody responses (post-vaccination concentrations >2.5-fold from baseline) were observed in 419/421 (99.5%) vaccine recipients at 21 days post-dose 2 and 445/460 (96.7%) at 56 days post-dose 1. In the booster cohort (n = 39), GMCs increased 9.0- and 11.8-fold at 7 and 21 days post-booster, respectively, versus pre-booster. Ad26.ZEBOV, MVA-BN-Filo was well tolerated, and no safety issues were identified.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Smallpox Vaccine , Humans , Hemorrhagic Fever, Ebola/prevention & control , Vaccination/methods , Antibodies, Viral , Double-Blind Method , Immunogenicity, Vaccine , Vaccines, Attenuated
4.
NPJ Vaccines ; 8(1): 174, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940656

ABSTRACT

The persistence of the long-term immune response induced by the heterologous Ad26.ZEBOV, MVA-BN-Filo two-dose vaccination regimen against Ebola has been investigated in several clinical trials. Longitudinal data on IgG-binding antibody concentrations were analyzed from 487 participants enrolled in six Phase I and Phase II clinical trials conducted by the EBOVAC1 and EBOVAC2 consortia. A model based on ordinary differential equations describing the dynamics of antibodies and short- and long-lived antibody-secreting cells (ASCs) was used to model the humoral response from 7 days after the second vaccination to a follow-up period of 2 years. Using a population-based approach, we first assessed the robustness of the model, which was originally estimated based on Phase I data, against all data. Then we assessed the longevity of the humoral response and identified factors that influence these dynamics. We estimated a half-life of the long-lived ASC of at least 15 years and found an influence of geographic region, sex, and age on the humoral response dynamics, with longer antibody persistence in Europeans and women and higher production of antibodies in younger participants.

5.
Vaccine ; 41(50): 7573-7580, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37981473

ABSTRACT

BACKGROUND: People living with HIV constitute an important part of the population in regions at risk of Ebola virus disease outbreaks. The two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen induces strong immune responses in HIV-positive (HIV+) adults but the durability of this response is unknown. It is also unclear whether this regimen can establish immune memory to enable an anamnestic response upon re-exposure to antigen. METHODS: This paper describes an open-label, phase 2 trial, conducted in Kenya and Uganda, of Ad26.ZEBOV booster vaccination in HIV+ participants who had previously received the Ad26.ZEBOV, MVA-BN-Filo primary regimen. HIV+ adults with well-controlled infection and on highly active antiretroviral therapy were enrolled, vaccinated with booster, and followed for 28 days. The primary objectives were to assess Ad26.ZEBOV booster safety and antibody responses against the Ebola virus glycoprotein using the Filovirus Animal Non-Clinical Group ELISA. RESULTS: The Ad26.ZEBOV booster was well-tolerated in HIV+ adults with mostly mild to moderate symptoms. No major safety concerns or serious adverse events were reported. Four and a half years after the primary regimen, 24/26 (92 %) participants were still classified as responders, with a pre-booster antibody geometric mean concentration (GMC) of 726 ELISA units (EU)/mL (95 %CI 447-1179). Seven days after the booster, the GMC increased 54-fold to 38,965 EU/mL (95 %CI 23532-64522). Twenty-one days after the booster, the GMC increased 176-fold to 127,959 EU/mL (95 %CI 93872-174422). The responder rate at both post-booster time points was 100 %. CONCLUSIONS: The Ad26.ZEBOV booster is safe and highly immunogenic in HIV+ adults with well-controlled infection. The Ad26.ZEBOV, MVA-BN-Filo regimen can generate long-term immune memory persisting for at least 4·5 years, resulting in a robust anamnestic response. TRIAL REGISTRATION: Pan African Clinical Trial Registry (PACTR202102747294430). CLINICALTRIALS: gov (NCT05064956).


Subject(s)
Ebola Vaccines , Ebolavirus , HIV Infections , Hemorrhagic Fever, Ebola , Adult , Humans , Antibodies, Viral , HIV , HIV Infections/drug therapy , Immunogenicity, Vaccine , Kenya , Uganda , Vaccinia virus
6.
Lancet Glob Health ; 11(11): e1743-e1752, 2023 11.
Article in English | MEDLINE | ID: mdl-37858585

ABSTRACT

BACKGROUND: This study assessed the safety and immunogenicity of the Ad26.ZEBOV and MVA-BN-Filo Ebola virus (EBOV) vaccine regimen in infants aged 4-11 months in Guinea and Sierra Leone. METHODS: In this phase 2, randomised, double-blind, active-controlled trial, we randomly assigned healthy infants (1:1 in a sentinel cohort, 5:2 for the remaining infants via an interactive web response system) to receive Ad26.ZEBOV followed by MVA-BN-Filo (Ebola vaccine group) or two doses of meningococcal quadrivalent conjugate vaccine (control group) administered 56 days apart. Infants were recruited at two sites in west Africa: Conakry, Guinea, and Kambia, Sierra Leone. All infants received the meningococcal vaccine 8 months after being randomly assigned. The primary objective was safety. The secondary objective was immunogenicity, measured as EBOV glycoprotein-binding antibody concentration 21 days post-dose 2, using the Filovirus Animal Non-Clinical Group ELISA. This study is registered with ClinicalTrials.gov (NCT03929757) and the Pan African Clinical Trials Registry (PACTR201905827924069). FINDINGS: From Aug 20 to Nov 29, 2019, 142 infants were screened and 108 were randomly assigned (Ebola vaccine n=75; control n=33). The most common solicited local adverse event was injection-site pain (Ebola vaccine 15 [20%] of 75; control four [12%] of 33). The most common solicited systemic adverse events with the Ebola vaccine were irritability (26 [35%] of 75), decreased appetite (18 [24%] of 75), pyrexia (16 [21%] of 75), and decreased activity (15 [20%] of 75). In the control group, ten (30%) of 33 had irritability, seven (21%) of 33 had decreased appetite, three (9%) of 33 had pyrexia, and five (15%) of 33 had decreased activity. The frequency of unsolicited adverse events was 83% (62 of 75 infants) in the Ebola vaccine group and 85% (28 of 33 infants) in the control group. No serious adverse events were vaccine-related. In the Ebola vaccine group, EBOV glycoprotein-binding antibody geometric mean concentrations (GMCs) at 21 days post-dose 2 were 27 700 ELISA units (EU)/mL (95% CI 20 477-37 470) in infants aged 4-8 months and 20 481 EU/mL (15 325-27 372) in infants aged 9-11 months. The responder rate was 100% (74 of 74 responded). In the control group, GMCs for both age groups were less than the lower limit of quantification and the responder rate was 3% (one of 33 responded). INTERPRETATION: Ad26.ZEBOV and MVA-BN-Filo was well tolerated and induced strong humoral responses in infants younger than 1 year. There were no safety concerns related to vaccination. FUNDING: Janssen Vaccines & Prevention and Innovative Medicines Initiative 2 Joint Undertaking. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Humans , Infant , Ebola Vaccines/adverse effects , Hemorrhagic Fever, Ebola/prevention & control , Sierra Leone , Guinea , Antibodies, Viral , Double-Blind Method , Glycoproteins , Fever
7.
J Infect Dis ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37673423

ABSTRACT

BACKGROUND: In response to recent Ebola epidemics, vaccine development against the Zaire ebolavirus (EBOV) has been fast-tracked in the past decade. Health care providers and frontliners working in Ebola-endemic areas are at high risk of contracting and spreading the virus. METHODS: This study assessed the safety and immunogenicity of the 2-dose heterologous Ad26.ZEBOV, MVA-BN-Filo vaccine regimen (administered at a 56-day interval) among 699 health care providers and frontliners taking part in a phase 2, monocentric, randomized vaccine trial in Boende, the Democratic Republic of Congo. The first participant was enrolled and vaccinated on 18 December 2019. Serious adverse events were collected up to 6 months after the last received dose. The EBOV glycoprotein FANG ELISA (Filovirus Animal Nonclinical Group enzyme-linked immunosorbent assay) was used to measure the immunoglobulin G-binding antibody response to the EBOV glycoprotein. RESULTS: The vaccine regimen was well tolerated with no vaccine-related serious adverse events reported. Twenty-one days after the second dose, an EBOV glycoprotein-specific binding antibody response was observed in 95.2% of participants. CONCLUSIONS: The 2-dose vaccine regimen was well tolerated and led to a high antibody response among fully vaccinated health care providers and frontliners in Boende.

8.
Cell Rep ; 42(9): 113101, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37691146

ABSTRACT

Ebola virus disease is a severe hemorrhagic fever with a high fatality rate. We investigate transcriptome profiles at 3 h, 1 day, and 7 days after vaccination with Ad26.ZEBOV and MVA-BN-Filo. 3 h after Ad26.ZEBOV injection, we observe an increase in genes related to antigen presentation, sensing, and T and B cell receptors. The highest response occurs 1 day after Ad26.ZEBOV injection, with an increase of the gene expression of interferon-induced antiviral molecules, monocyte activation, and sensing receptors. This response is regulated by the HESX1, ATF3, ANKRD22, and ETV7 transcription factors. A plasma cell signature is observed on day 7 post-Ad26.ZEBOV vaccination, with an increase of CD138, MZB1, CD38, CD79A, and immunoglobulin genes. We have identified early expressed genes correlated with the magnitude of the antibody response 21 days after the MVA-BN-Filo and 364 days after Ad26.ZEBOV vaccinations. Our results provide early gene signatures that correlate with vaccine-induced Ebola virus glycoprotein-specific antibodies.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Ebola Vaccines/genetics , Antibody Formation , Transcriptome/genetics , Vaccination , Antibodies, Viral , Vaccinia virus
9.
Front Immunol ; 14: 1215302, 2023.
Article in English | MEDLINE | ID: mdl-37727795

ABSTRACT

Introduction: In the absence of clinical efficacy data, vaccine protective effect can be extrapolated from animals to humans, using an immunological biomarker in humans that correlates with protection in animals, in a statistical approach called immunobridging. Such an immunobridging approach was previously used to infer the likely protective effect of the heterologous two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen. However, this immunobridging model does not provide information on how the persistence of the vaccine-induced immune response relates to durability of protection in humans. Methods and results: In both humans and non-human primates, vaccine-induced circulating antibody levels appear to be very stable after an initial phase of contraction and are maintained for at least 3.8 years in humans (and at least 1.3 years in non-human primates). Immunological memory was also maintained over this period, as shown by the kinetics and magnitude of the anamnestic response following re-exposure to the Ebola virus glycoprotein antigen via booster vaccination with Ad26.ZEBOV in humans. In non-human primates, immunological memory was also formed as shown by an anamnestic response after high-dose, intramuscular injection with Ebola virus, but was not sufficient for protection against Ebola virus disease at later timepoints due to a decline in circulating antibodies and the fast kinetics of disease in the non-human primates model. Booster vaccination within three days of subsequent Ebola virus challenge in non-human primates resulted in protection from Ebola virus disease, i.e. before the anamnestic response was fully developed. Discussion: Humans infected with Ebola virus may benefit from the anamnestic response to prevent disease progression, as the incubation time is longer and progression of Ebola virus disease is slower as compared to non-human primates. Therefore, the persistence of vaccine-induced immune memory could be considered as a potential correlate of long-term protection against Ebola virus disease in humans, without the need for a booster.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Humans , Hemorrhagic Fever, Ebola/prevention & control , Immunologic Memory , Antibodies , Antigens, Viral
10.
EBioMedicine ; 91: 104562, 2023 May.
Article in English | MEDLINE | ID: mdl-37099841

ABSTRACT

BACKGROUND: This analysis evaluated the immune response to the two-dose, heterologous Ad26.ZEBOV, MVA-BN-Filo Ebola virus vaccine regimen, administered 56-days apart, from multiple African sites based on results from one analytic laboratory. METHODS: Immunogenicity across three trials (EBL2002, EBL2004/PREVAC, EBL3001) conducted in East and West Africa is summarised. Vaccine-induced Ebola glycoprotein-binding antibody concentrations were analysed by Q2 Solutions laboratory at baseline, 21 days (EBL2002 and EBL3001) or 28 days (EBL2004) post-dose 2 (regimen completion), and 12 months post-dose 1 using the validated Filovirus Animal Nonclinical Group Ebola glycoprotein enzyme-linked immunosorbent assay (ELISA). Responders were defined as those with a >2.5-fold increase from baseline or the lower limit of quantification (LLOQ) if 

Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Glycoproteins , Immunity, Humoral
11.
Lancet Infect Dis ; 23(3): 352-360, 2023 03.
Article in English | MEDLINE | ID: mdl-36273490

ABSTRACT

BACKGROUND: Children account for a substantial proportion of cases and deaths during Ebola virus disease outbreaks. We aimed to evaluate the safety and immunogenicity of a booster dose of the Ad26.ZEBOV vaccine in children who had been vaccinated with a two-dose regimen comprising Ad26.ZEBOV as dose one and MVA-BN-Filo as dose two. METHODS: We conducted an open-label, non-randomised, phase 2 trial at one clinic in Kambia Town, Sierra Leone. Healthy children, excluding pregnant or breastfeeding girls, who had received the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen in a previous study, and were aged 1-11 years at the time of their first vaccine dose, received an intramuscular injection of Ad26.ZEBOV (5 × 1010 viral particles) and were followed up for 28 days. Primary outcomes were safety (measured by adverse events) and immunogenicity (measured by Ebola virus glycoprotein-specific IgG binding antibody geometric mean concentration) of the booster vaccine dose. Safety was assessed in all participants who received the booster vaccination; immunogenicity was assessed in all participants who received the booster vaccination, had at least one evaluable sample after the booster, and had no major protocol deviations that could have influenced the immune response. This trial is registered with ClinicalTrials.gov, NCT04711356. FINDINGS: Between July 8 and Aug 18, 2021, 58 children were assessed for eligibility and 50 (27 aged 4-7 years and 23 aged 9-15 years) were enrolled and received an Ad26.ZEBOV booster vaccination, more than 3 years after receiving dose one of the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen. The booster was well tolerated. The most common solicited local adverse event during the 7 days after vaccination was injection site pain, reported in 18 (36%, 95% CI 23-51) of 50 participants. The most common solicited systemic adverse event during the 7 days after vaccination was headache, reported in 11 (22%, 12-36) of 50 participants. Malaria was the most common unsolicited adverse event during the 28 days after vaccination, reported in 25 (50%, 36-64) of 50 participants. No serious adverse events were observed during the study period. 7 days after vaccination, the Ebola virus glycoprotein-specific IgG binding antibody geometric mean concentration was 28 561 ELISA units per mL (95% CI 20 255-40 272), which was 44 times higher than the geometric mean concentration before the booster dose. 21 days after vaccination, the geometric mean concentration reached 64 690 ELISA units per mL (95% CI 48 356-86 541), which was 101 times higher than the geometric mean concentration before the booster dose. INTERPRETATION: A booster dose of Ad26.ZEBOV in children who had received the two-dose Ad26.ZEBOV and MVA-BN-Filo vaccine regimen more than 3 years earlier was well tolerated and induced a rapid and robust increase in binding antibodies against Ebola virus. These findings could inform Ebola vaccination strategies in paediatric populations. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Female , Humans , Child , Hemorrhagic Fever, Ebola/prevention & control , Antibodies, Viral , Vaccinia virus , Glycoproteins , Immunoglobulin G , Immunogenicity, Vaccine
12.
N Engl J Med ; 387(26): 2411-2424, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36516078

ABSTRACT

BACKGROUND: Questions remain concerning the rapidity of immune responses and the durability and safety of vaccines used to prevent Zaire Ebola virus disease. METHODS: We conducted two randomized, placebo-controlled trials - one involving adults and one involving children - to evaluate the safety and immune responses of three vaccine regimens against Zaire Ebola virus disease: Ad26.ZEBOV followed by MVA-BN-Filo 56 days later (the Ad26-MVA group), rVSVΔG-ZEBOV-GP followed by placebo 56 days later (the rVSV group), and rVSVΔG-ZEBOV-GP followed by rVSVΔG-ZEBOV-GP 56 days later (the rVSV-booster group). The primary end point was antibody response at 12 months, defined as having both a 12-month antibody concentration of at least 200 enzyme-linked immunosorbent assay units (EU) per milliliter and an increase from baseline in the antibody concentration by at least a factor of 4. RESULTS: A total of 1400 adults and 1401 children underwent randomization. Among both adults and children, the incidence of injection-site reactions and symptoms (e.g., feverishness and headache) was higher in the week after receipt of the primary and second or booster vaccinations than after receipt of placebo but not at later time points. These events were largely low-grade. At month 12, a total of 41% of adults (titer, 401 EU per milliliter) and 78% of children (titer, 828 EU per milliliter) had a response in the Ad26-MVA group; 76% (titer, 992 EU per milliliter) and 87% (titer, 1415 EU per milliliter), respectively, had a response in the rVSV group; 81% (titer, 1037 EU per milliliter) and 93% (titer, 1745 EU per milliliter), respectively, had a response in the rVSV-booster group; and 3% (titer, 93 EU per milliliter) and 4% (titer, 67 EU per milliliter), respectively, had a response in the placebo group (P<0.001 for all comparisons of vaccine with placebo). In both adults and children, antibody responses with vaccine differed from those with placebo beginning on day 14. CONCLUSIONS: No safety concerns were identified in this trial. With all three vaccine regimens, immune responses were seen from day 14 through month 12. (Funded by the National Institutes of Health and others; PREVAC ClinicalTrials.gov number, NCT02876328; EudraCT numbers, 2017-001798-18 and 2017-001798-18/3rd; and Pan African Clinical Trials Registry number, PACTR201712002760250.).


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Adult , Child , Humans , Antibodies, Viral , Democratic Republic of the Congo , Ebola Vaccines/therapeutic use , Hemorrhagic Fever, Ebola/prevention & control
13.
PLoS One ; 17(10): e0274906, 2022.
Article in English | MEDLINE | ID: mdl-36197845

ABSTRACT

BACKGROUND: Though clinically similar, Ebola virus disease and Marburg virus disease are caused by different viruses. Of the 30 documented outbreaks of these diseases in sub-Saharan Africa, eight were major outbreaks (≥200 cases; five caused by Zaire ebolavirus [EBOV], two by Sudan ebolavirus [SUDV], and one by Marburg virus [MARV]). Our purpose is to develop a multivalent vaccine regimen protecting against each of these filoviruses. This first-in-human study assessed the safety and immunogenicity of several multivalent two-dose vaccine regimens that contain Ad26.Filo and MVA-BN-Filo. METHODS: Ad26.Filo combines three vaccines encoding the glycoprotein (GP) of EBOV, SUDV, and MARV. MVA-BN-Filo is a multivalent vector encoding EBOV, SUDV, and MARV GPs, and Taï Forest nucleoprotein. This Phase 1, randomized, double-blind, placebo-controlled study enrolled healthy adults (18-50 years) into four groups, randomized 5:1 (active:placebo), to assess different Ad26.Filo and MVA-BN-Filo vaccine directionality and administration intervals. The primary endpoint was safety; immune responses against EBOV, SUDV, and MARV GPs were also assessed. RESULTS: Seventy-two participants were randomized, and 60 (83.3%) completed the study. All regimens were well tolerated with no deaths or vaccine-related serious adverse events (AEs). The most frequently reported solicited local AE was injection site pain/tenderness. Solicited systemic AEs most frequently reported were headache, fatigue, chills, and myalgia; most solicited AEs were Grade 1-2. Solicited/unsolicited AE profiles were similar between regimens. Twenty-one days post-dose 2, 100% of participants on active regimen responded to vaccination and exhibited binding antibodies against EBOV, SUDV, and MARV GPs; neutralizing antibody responses were robust against EBOV (85.7-100%), but lower against SUDV (35.7-100%) and MARV (0-57.1%) GPs. An Ad26.Filo booster induced a rapid further increase in humoral responses. CONCLUSION: This study demonstrates that heterologous two-dose vaccine regimens with Ad26.Filo and MVA-BN-Filo are well tolerated and immunogenic in healthy adults. CLINICALTRIALS.GOV: NCT02860650.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Marburgvirus , Adolescent , Adult , Animals , Antibodies, Neutralizing , Antibodies, Viral , Glycoproteins , Humans , Middle Aged , Nucleoproteins , Vaccines, Combined , Vaccinia virus , Young Adult
14.
Proc Natl Acad Sci U S A ; 117(34): 20706-20716, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32764145

ABSTRACT

Cytotoxic T cell differentiation is guided by epigenome adaptations, but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T cell-specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation toward a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Mechanistically, DOT1L controlled CD8+ T cell differentiation by ensuring normal T cell receptor density and signaling. DOT1L also maintained epigenetic identity, in part by indirectly supporting the repression of developmentally regulated genes. Finally, deletion of Dot1L in T cells resulted in an impaired immune response. Through our study, DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and controlling epigenetic integrity.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Cell Differentiation/genetics , Epigenesis, Genetic/genetics , Epigenomics , Female , Histone Methyltransferases/metabolism , Histone-Lysine N-Methyltransferase/physiology , Histones/metabolism , Male , Methyltransferases/metabolism , Mice
15.
Nat Commun ; 11(1): 3157, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32572029

ABSTRACT

Resistance to targeted cancer drugs is thought to result from selective pressure exerted by a high drug dose. Partial inhibition of multiple components in the same oncogenic signalling pathway may add up to complete pathway inhibition, while decreasing the selective pressure on each component to acquire a resistance mutation. We report here testing of this Multiple Low Dose (MLD) therapy model in EGFR mutant NSCLC. We show that as little as 20% of the individual effective drug doses is sufficient to completely block MAPK signalling and proliferation when used in 3D (RAF + MEK + ERK) or 4D (EGFR + RAF + MEK + ERK) inhibitor combinations. Importantly, EGFR mutant NSCLC cells treated with MLD therapy do not develop resistance. Using several animal models, we find durable responses to MLD therapy without associated toxicity. Our data support the notion that MLD therapy could deliver clinical benefit, even for those having acquired resistance to third generation EGFR inhibitor therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/genetics , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Humans , Lung Neoplasms/drug therapy , MAP Kinase Signaling System/drug effects , Mice , Models, Animal , Mutation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/toxicity , Tumor Cells, Cultured
16.
J Pathol ; 250(2): 134-147, 2020 02.
Article in English | MEDLINE | ID: mdl-31518438

ABSTRACT

Colorectal cancer (CRC) is the fourth cause of death from cancer worldwide mainly due to the high incidence of drug-resistance. During a screen for new actionable targets in drug-resistant tumours we recently identified p65BTK - a novel oncogenic isoform of Bruton's tyrosine kinase. Studying three different cohorts of patients here we show that p65BTK expression correlates with histotype and cancer progression. Using drug-resistant TP53-null colon cancer cells as a model we demonstrated that p65BTK silencing or chemical inhibition overcame the 5-fluorouracil resistance of CRC cell lines and patient-derived organoids and significantly reduced the growth of xenografted tumours. Mechanistically, we show that blocking p65BTK in drug-resistant cells abolished a 5-FU-elicited TGFB1 protective response and triggered E2F-dependent apoptosis. Taken together, our data demonstrated that targeting p65BTK restores the apoptotic response to chemotherapy of drug-resistant CRCs and gives a proof-of-concept for suggesting the use of BTK inhibitors in combination with 5-FU as a novel therapeutic approach in CRC patients. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Disease Progression , Drug Resistance, Neoplasm/drug effects , Drug Synergism , E2F Transcription Factors/metabolism , Fluorouracil/administration & dosage , Fluorouracil/pharmacology , Genes, p53 , Humans , Mice, Nude , Molecular Targeted Therapy/methods , Neoplasm Staging , Organoids/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/pharmacology , Transforming Growth Factor beta1/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/methods
17.
Sci Transl Med ; 11(513)2019 10 09.
Article in English | MEDLINE | ID: mdl-31597751

ABSTRACT

There is a clear and unmet clinical need for biomarkers to predict responsiveness to chemotherapy for cancer. We developed an in vitro test based on patient-derived tumor organoids (PDOs) from metastatic lesions to identify nonresponders to standard-of-care chemotherapy in colorectal cancer (CRC). In a prospective clinical study, we show the feasibility of generating and testing PDOs for evaluation of sensitivity to chemotherapy. Our PDO test predicted response of the biopsied lesion in more than 80% of patients treated with irinotecan-based therapies without misclassifying patients who would have benefited from treatment. This correlation was specific to irinotecan-based chemotherapy, however, and the PDOs failed to predict outcome for treatment with 5-fluorouracil plus oxaliplatin. Our data suggest that PDOs could be used to prevent cancer patients from undergoing ineffective irinotecan-based chemotherapy.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Organoids/cytology , Antineoplastic Agents/therapeutic use , Capecitabine/therapeutic use , Colorectal Neoplasms/drug therapy , Female , Fluorouracil/therapeutic use , Humans , Irinotecan/therapeutic use , Oxaliplatin/therapeutic use , Prospective Studies , Treatment Outcome
18.
EMBO J ; 38(14): e101564, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31304633

ABSTRACT

DOT1L methylates histone H3K79 and is aberrantly regulated in MLL-rearranged leukemia. Inhibitors have been developed to target DOT1L activity in leukemia, but cellular mechanisms that regulate DOT1L are still poorly understood. We have identified the histone deacetylase Rpd3 as a negative regulator of budding yeast Dot1. At its target genes, the transcriptional repressor Rpd3 restricts H3K79 methylation, explaining the absence of H3K79me3 at a subset of genes in the yeast genome. Similar to the crosstalk in yeast, inactivation of the murine Rpd3 homolog HDAC1 in thymocytes led to an increase in H3K79 methylation. Thymic lymphomas that arise upon genetic deletion of Hdac1 retained the increased H3K79 methylation and were sensitive to reduced DOT1L dosage. Furthermore, cell lines derived from Hdac1Δ/Δ thymic lymphomas were sensitive to a DOT1L inhibitor, which induced apoptosis. In summary, we identified an evolutionarily conserved crosstalk between HDAC1 and DOT1L with impact in murine thymic lymphoma development.


Subject(s)
Histone Deacetylase 1/genetics , Histone Deacetylase 2/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Lymphoma/metabolism , Thymus Neoplasms/metabolism , Acetylation , Animals , Cell Line, Tumor , Gene Deletion , Histone Deacetylases/genetics , Humans , Lymphoma/genetics , Methylation , Mice , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Thymus Neoplasms/genetics
19.
FASEB J ; 31(5): 2195-2209, 2017 05.
Article in English | MEDLINE | ID: mdl-28183801

ABSTRACT

Although chemotherapy is designed to eradicate tumor cells, it also has significant effects on normal tissues. The platinum-induced fatty acid 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) induces systemic resistance to a broad range of DNA-damaging chemotherapeutics. We show that 16:4(n-3) exerts its effect by activating splenic F4/80+/CD11blow macrophages, which results in production of chemoprotective lysophosphatidylcholines (LPCs). Pharmacologic studies, together with analysis of expression patterns, identified GPR120 on F4/80+/CD11blow macrophages as the relevant receptor for 16:4(n-3). Studies that used splenocytes from GPR120-deficient mice have confirmed this conclusion. Activation of the 16:4(n-3)-GPR120 axis led to enhanced cPLA2 activity in these splenic macrophages and secretion of the resistance-inducing lipid mediator, lysophosphatidylcholine(24:1). These studies identify a novel and unexpected function for GPR120 and suggest that antagonists of this receptor might be effective agents to limit development of chemotherapy resistance.-Houthuijzen, J. M., Oosterom, I., Hudson, B. D., Hirasawa, A., Daenen, L. G. M., McLean, C. M., Hansen, S. V. F., van Jaarsveld, M. T. M., Peeper, D. S., Jafari Sadatmand, S., Roodhart, J. M. L., van de Lest, C. H. A., Ulven, T., Ishihara, K., Milligan, G., Voest, E. E. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance.


Subject(s)
Macrophages/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Drug Resistance/physiology , Fatty Acids, Omega-3/metabolism , Mice, Inbred BALB C , Signal Transduction/physiology
20.
Article in English | MEDLINE | ID: mdl-27688812

ABSTRACT

BACKGROUND: In mammals, tight regulation of cytosine methylation is required for embryonic development and cellular differentiation. The trans-acting DNA methyltransferases that catalyze this modification have been identified and characterized; however, these proteins lack sequence specificity, leaving the mechanism of targeting unknown. A cis-acting regulator within the Rasgrf1 imprinting control region (ICR) is necessary for establishment and maintenance of local imprinted methylation. Here, we investigate whether 3-kb of sequence from the Rasgrf1 ICR is sufficient to direct appropriate imprinted methylation and target gene expression patterns when ectopically inserted at the Wnt1 locus. RESULTS: The Rasgrf1 ICR at Wnt1 lacked somatic methylation when maternally transmitted and was fully methylated upon paternal transmission, consistent with its behavior at the Rasgrf1 locus. It was unmethylated in the female germline and was enriched for methylation in the male germline, though not to the levels seen at the endogenous Rasgrf1 allele. Wnt1 expression was not imprinted by the ectopic ICR, likely due to additional sequences being required for this function. CONCLUSIONS: We have identified sequences that are sufficient for partial establishment and full maintenance of the imprinted DNA methylation patterns. Because full somatic methylation can occur without full gametic methylation, we infer that somatic methylation of the Rasgrf1 ICR is not simply a consequence of maintained gametic methylation.

SELECTION OF CITATIONS
SEARCH DETAIL
...